
Improving the Transmission Performance of 
Fragmented Messages in Websocket 

Raphael O Anumba
CTT Research Lab, 29626 Teasedale Place, Castaic, CA 91384, USA

Abstract— Websocket protocol is inherently based on data 
frame transmission, when fragmented can adversely affect the 
rate of data transmission. We have analyzed the frame 
structure of the Websocket protocol and provided a greedy 
approach of improving the transmission speed without 
modifying the underling frame structure. This approach will 
drastically improve the transmission of very large data, 
particularly music and video.  

Keywords- Websocket, Fragmentation, Performance. 

I. INTRODUCTION 

Websocket was the first major HTTP upgrades ushered 
by the introduction of HTML5. The underlining WebSocket 
protocol [1] enables message exchange between clients and 
servers on top of a persistent TCP connection. The 
WebSocket detail created as a major aspect of the HTML5 
activity, presented the WebSocket JavaScript interface, 
which characterizes a full-duplex single attachment 
association over which messages can be sent between the 
client and server. The WebSocket standard rearranges a 
great part of the unpredictability around bi-directional web 
correspondence and association administration.  

WebSocket is intended to be actualized in client web 
programs and web servers, yet it can be utilized by any 
client or server application. The WebSocket protocol is a 
free TCP-built convention. It’s association to HTTP is that 
its handshake is deciphered by HTTP servers as an Upgrade 
[2]. The WebSocket convention makes more 
communication between a client and a server conceivable, 
encouraging live substance and the production of ongoing 
amusements. This is made conceivable by giving an 
institutionalized path to the server to send messages to the a 
client program without being requested by the client, and 
taking into account messages to be sent forward and 
backward while keeping the communication open.  

Along these lines a two-way (bi-directional) progressing 
discussion can occur between an application and the server. 
The correspondences are done over TCP port number 80, 
which is of advantage for those situations which square 
non-web internet associations utilizing a firewall. 
Comparable two-way program server correspondences have 
been accomplished in non-institutionalized ways utilizing 
stopgap advances, for example, Comet. 

II. WEBSOCKET FRAME

After a successful handshake between the client and 
server will start transmitting messages of which at the 
protocol level are transmitted as contiguous frames. Frames 

can be categorized based on the value of the opcode. The 
major categories are non-control and control frames (Table 
1). Non-control frames are mainly data frames (Text and 
Binary data) and control frames (continuation, close, ping 
and pong frames). 

Table 1- Categories of Opcode 

A. Control Frames 

The Control frames are recognized by opcodes where the 
most critical piece of the opcode is 1. As of now 
characterized opcodes for control frames incorporate 0x8 
(Close), 0x9 (Ping), and 0xA (Pong). Opcodes 0xB-0xF are 
saved for further control frames yet to be characterized. 

Control frames are utilized to convey state about the 
WebSocket. Control frames can be contributed amidst a 
fragmented message. All control frames must have a 
payload length of 125 bytes or less and must not be 
fragmented. 

B. Data Frame 

The information can be fragmented into numerous 
frames. The primary frame that transmits the information 
has an opcode on it that demonstrates what kind of 
information is being transmitted [3]. This is just truly 
important in light of the fact that JavaScript has essentially 
non-existing backing for binary data at the time the detail 
was begun. 

Payload information can be part up into numerous 
individual frames. The less than desirable end should buffer 
them up until the fin is set. So one can transmit the string 

Raphael O Anumba  / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 360-362

www.ijcsit.com 360



Hello World in 11 bundles of 6 (header length) + 1 byte 
each if that is what floats. Discontinuity is not taken into 
consideration control bundles. However the particular needs 
to have the capacity to handle interleaved control frames. 

Fragmentation works in this way that a WebSocket 
message may be part into numerous WebSocket frames - 
furthermore combine at whatever time by the sender, as 
well as any intermediaries while in transit to the receiver. 
The last WebSocket edge of a succession of edges for a 
given message will have the FIN bit set. 

The rationale for joining frames is generally in this form: 
get first frame, recollect opcode, link outline payload 
together until the fin bit is set. Affirm that the opcode for 
every bundle is zero. The explanation behind fragmentation 
is probably that one can create odds and ends of data on the 
server and send them to the client to buffer up rather than 
the server and the other way around. It's hard to handle on 
both client and server yet makes it less demanding for a 
JavaScript software engineer to handle [5]. The messy bits 
of the transport protocol are totally concealed away. Since 
the server's local convention was totally in view of the idea 
of streaming JSON there is zero quality in the messages. It 
is a typical thing for individuals adding Websocket backing 
to servers that beforehand placed some other convention on 
top of TCP. 

III. FRAGMENTATION 

A. Rational behind fragmentation 

The main role of fragmentation is to permit 
communicating specific message that is of obscure scope in 
term of size when transmission is done without buffering. 
In the event that a message couldn't be divided, then an 
endpoint would need to buffer the whole message so its 
distance could be numbered before the first byte is sent [4]. 
With discontinuity, a server or middle person may pick a 
sensible size buffer and, when the support is complete, 
compose a section to the system. 

A subordinate use-case for fragmentation is for 
multiplexing, where it is not alluring for an extensive 
message on one consistent network to corner the yield 
guide, so the multiplexing should be allowed to break the 
message into smaller fragments to better share the output 
channel [1]. 

Unless determined generally by an expansion, frames 
have no semantic importance. A mediator may mix and/or 
split frames, if no augmentations were arranged by the 
client and the server or if a few expansions were arranged, 
yet the delegate saw every one of the expansions arranged 
and knows how to blend and/or split edges in the vicinity of 
these expansions. One implications of this is without 
augmentations, senders and receivers must not rely on upon 
the vicinity of particular frame limits. 

B. Use Cases 

WebSocket is intended to be executed in web programs 
and web servers; however it can be utilized by any client or 
server application. The WebSocket Protocol is a free TCP-
based protocol. The interchanges are done over TCP port 
number 80, which is of advantage for those situations which 
square non-web Internet associations utilizing a firewall. 

The main role of fragmentation is to permit communicating 
something specific that is of obscure size when the message 
is begun without buffering that message. On the off chance 
that messages couldn't be divided, then an endpoint would 
need to support the whole message so its length could be 
checked before the first byte is sent. A second use-case for 
discontinuity is for multiplexing, where it is not alluring for 
an extensive message on one coherent channel to corner the 
yield channel, so the multiplexing should be allowed to 
break the message into small fragments to better share the 
output channel. 

IV. EXPERIMENT 

The transmission of very large messages over 
websocket channel tends to pose some problem in terms of 
speed of transmission, particularly when the transmission 
calls for fragmentation whenever duplex transmission kicks 
in.  In order to isolate this bottleneck we studied and 
analysed the whole message transmission from one 
endpoint to another.  

This endpoint to endpoint transmission has been divided 
into three phases: the transmitter building phase, the over 
the wire phase and the receiver build phase. 
The two building phases are similar and measurable within 
some acceptable margin of error. However, the over the 
wire transmission measurement will drastically vary from 
media to media depending on the maximum transfer unit 
(MTU) of the underlining protocol [6]. 

We found out that most websocket transmitters (Server 
and client) send their messages at a fixed frame sizes which 
are usually at small frame sizes, which result in transmitting 
so many frames and consequently taking much time. 

We were able to improve on this bottleneck by using 
what we refer to as progressive frame size as transmission 
proceeds. 

A. Setup 
The total transfer time is:  

 
 

SFBT + OTWTT + CFBT 
 

 
 Where N is the number frame transmitted, 
  Ft is a frame build time, 
  Wt is over the wire transmission time, 

It, Sd and Ot are respectively input stream 
perturbation time; over the wire system 
dependent time and client output 
perturbation time. 

      Our experiment has only considered the performance of 
SFBT, which is completely similar to CFBT. We left out 
OTWTT because of the unpredictable and uncontrollable 
dependency on many external systems. 

Raphael O Anumba  / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 360-362

www.ijcsit.com 361



For only SFBT, we considered various message sizes 
ranging from 128MB to around 132GB. We measured the 
frame build time, in Nano-seconds for various frame size 
ranging from 8,192KB to 131,072KB. Figure-1 depicts the 
performance of various frame sizes as the message sizes 
increase.  

 
Figure-1: The Rate of transmission of various data size and message 

sizes 

     The result of the same experiment was transposed in 
Figure-2 to present additional smaller frame sizes 1,024KB, 
2,948KB and 4,096KB. This shows the performance of 
message transmission in Nano seconds, against the various 
frame sizes.  

 
Figure-2: The Rate of transmission of various data size and frame 

sizes 

B. Result 

For the fact that the size of a message was not known at 
transmission time, we devised a method of increasing the 
frame sizes (8,192 KB, 16,384 KB, 32,768 KB, 65,536 KB 

and 131,072 KB)  as the transmission progresses. At each 
frame size transmission, instead of remaining at a fixed 
frame size, it will switch into the next higher frame size. 
Figure-3 shows the drastic reduction in transmission time. 
Moreover, there were no much deviation  in the 
performance at all frame sizes.  
 

 
Figure-3: The Rate of transmission of various data size and 

progressive frame sizes 

V. CONCLUSIONS 

A study, design and implantation of a drastic 
improvement in frame based websocket message 
transmission was presented. Instead of transmission on a 
fixed frame size, a progressive increase in frame size was 
adopted. This has surprisingly reduced the transmission 
time.   

We hope that our finding will reduce the transmission 
time over websocket duplex channel and assist in enhancing 
the quality of compressed data, music and video 
transmission over the internet. 

 
REFERENCES 

[1] Fette, I. and A. Melnikov, The WebSocket Protocol, RFC6455, 
December 2011. 

[2] Erkkilä, J. P., 2012, Websocket security analysis, Aalto University 
School of Science, 2-3 

[3] Gackenheimer, C., 2013, Creating a WebSocket Server. In Node. js 
Recipes (pp. 191-220), Apress. 

[4] Simonsen, K. I. F., & Kristensen, L. M., 2014, Implementing the 
WebSocket Protocol Based on Formal Modelling and Automated 
Code Generation. In Distributed Applications and Interoperable 
Systems (pp. 104-118), Springer Berlin Heidelberg 

[5] Wang, V., Salim, F., & Moskovits, P., 2013, The WebSocket 
Protocol. In The Definitive Guide to HTML5 WebSocket (pp. 33-
60), Apress 

[6] Murray, David; Terry Koziniec; Kevin Lee; Michael Dixon (2012). 
Large MTUs and internet performance. 13th IEEE Conference on 
High Performance Switching and Routing (HPSR 2012). 

 

Raphael O Anumba  / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (1) , 2016, 360-362

www.ijcsit.com 362




